

NOAA Technical Memorandum NWS WR-205

FORECAST GUIDELINES FOR FIRE WEATHER AND FORECASTERS -- HOW NIGHTTIME HUMIDITY AFFECTS WILDLAND FUELS

David W. Goens

:/یا. بد

> Weather Service Office Missoula, Montana February 1989

> > U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Weather Service

NOAA TECHNICAL MEMORANDA National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distincted widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed.

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, P.O. Box 11188, Federal Building, 125 South State Street, Salt Lake City, Utah 84147. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service, U.S. Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22161. Prices vary for all paper copies; microfiche are \$3.50. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

- Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December
- 1965. Western Region Pre- and Post-FP-3 Program, December 1, 1965, to February 20, 1966. Edward D. Diemer, March 1966. Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (Revised November 1967, October 1969). (PB-17800) Interpreting the RAREP. Herbert P. Benner, May 1966 (Revised January 1967). Some Electrical Processes in the Atmosphere. J. Latham, June 1966. A Digitalized Summary of Radar Echces within 100 Miles of Sacramento, Califor-nia. J. A. Youngberg and L. B. Overaas, December 1966. An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, April 1967. Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967.

ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)

- Verification of Operation Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PB-176240) A Study of Winds in the Lake Mead Recreation Area. R. P. Augulis, January 1968. (PB-177830) Weather Extremes. R. J. Schmidli, April 1968 (Revised March 1986). (PB86 177672/AS) Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968. (PB178425) Numerical Weather Prediction and Synoptic Meteorology. CPT Thomas D. Murphy, USAF, May 1968. (AD 673365) 30
- Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belesky, July 1968. (PB 179084)
- July 1968. (PB 179084) Probability Forecasting-A Problem Analysis with Reference to the Portland Fire Weather District. Harold S. Ayer, July 1968. (PB 179289) Temperature Trends in Sacramento-Another Heat Island. Anthony D. Lentini, February 1969. (PB 183055) Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB 183057) Upper-Air Lows Over Northwestern United States. A.L. Jacobson, April 1969. PB 184286)

- Upper-Air Lows Over Northwestern United States. A.L. Jacobson, April 1969. PB 184296)
 The Man-Machine Mix in Applied Weather Forecasting in the 1970s. L.W. Snellman, August 1969. (PB 185068)
 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB 185762)
 Estimated Return Periods for Short-Duration Precipitation in Arizona. Paul C. Kangieser, October 1969. (PB 187763)
 Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Vee and E. Bates, December 1969. (PB 190476)
 Statistical Analysis as a Flood Routing Tool. Robert J.C. Burnash, December 1960. (PB 188744)
 Tsunami, Richard P. Augulis, February 1970. (PB 190157)
 Predicting Precipitation Type. Robert J.C. Burnash and Floyd E. Hug, March 1970. (PB 190462)
 Statistical Report on Aeroallergens (Pollens and Molds) Fort Huachuca, Arizona, 1969. Wave S. Johnson, April 1970. (PB 191743)
 Western Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970. (PB 193047)
 A Policeasting Tody and C. M. Veliquette, July 1970. (PB 193247)

- Gerald B. Burdwell, July 1970. (PB 193102) Sacramento Weather Radar Climatology. R.G. Pappas and C. M. Veliquette, July 1970. (PB 193347) A Refinement of the Vorticity Field to Delineate Areas of Significant Precipi-tation. Barry B. Aronovitch, August 1970. (PB 194394) Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194394) Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194394) Areal Coverage of Precipitation in Northwestern Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194389) Preliminary Report on Agricultural Field Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB 194710) Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM 71 00017) Anplication of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM 71 00016) An Aid for Forecasting the Minimum Temperature at Medford, Oregon, Arthur W. Fritz, October 1970. (COM 71 00120) 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northern Idaho. Norris E. Woerner, February 1971. (COM 71 00349) Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971. Climate of Sacramento, California. Tony Martini, January 1988. (PB88 206370/AS) A Preliminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K Hall, June 1971. (COM 71 00829) National Weather Regimes the Support to Soaring Activities. Ellis Burton, August 1971. (COM 71 00956) Western Region Synoptic Analysis-Problems and Methods. Philip Williams, Jr., February 1972. (COM 72 10433)

- Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM 72 10554) A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM 72 10707) Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles International Airport. Donald M. Gales, July 1972. (COM 72 11140) A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM 72 11136) Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Vectors. Earl T. Riddiough, July 1972. (COM 72 11146) Climate of Stockton, California. Robert C. Nelson, July 1972. (COM 72 10920) Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (COM 72 10021) An Aid for Forecasting Summer Maximum Temperatures at Seattle. Washington.

- Lastantoco, october 1972. (COM 73 10021)
 An Aid for Forecasting Summer Maximum Temperatures at Seattle, Washington.
 Edgar G. Johnson, November 1972. (COM 73 10150)
 Flash Flood Forecasting and Warning Program in the Western Region. Philip
 Williams, Jr., Chester L. Glenn, and Roland L. Raetz, December 1972, (Revised
 March 1978. (COM 73 10251)
 A comparison of Manual and Semiautomatic Methods of Digitizing Analog Wind
 Records. Glenn E. Rasch, March 1973. (COM 73 10669)
 Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul C.
 Kangieser, June 1973. (COM 73 11264)
 A Refinement of the Use of K-Values in Forecasting Thunderstorms in Washington and Oregon. Robert Y.G. Lee, June 1973. (COM 73 11276)
 Objective Forecast Precipitation Over the Western Region of the United States. Julia N. Paegle and Larry P. Kierulff, September 1973. (COM 73 10465)
 Arizona 'Eddy' Tornadoes. Robert S. Ingram, October 1973. (COM 73 10465)
 Smoke Management in the Willamette Valley. Earl M. Bates, May 1974. (COM 74 11277/AS)

- 11277/AS)

- Use of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton, Jr., March 1976. (PB 254 649)

- Use of MOS FORCAST Parameters in Temperature Forecasting. Joint C. Flammuna, Jr., March 1976. (PB 258 649) Map Types as Aids in Using MOS PoPs in Western United States. Ira S. Brenner, August 1976. (PB 259 594) Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB 260 437/AS) Forecasting North Winds in the Upper Sacramento Valley and Adjoining Forests. Christopher E. Fontana, September 1976. (PB 273 677/AS) Cool Inflow as a Weakening Influence on Eastern Pacific Tropical Cyclones. William J. Denney, November 1976. (PB 264 655/AS) The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB 265 941/AS) Winter Season Minimum Temperature Formula for Bakersfield, California, Using Multiple Regression. Michael J. Oard, February 1977. (PB 273 694/AS) Tropical Cyclone Kathleen, James R. Fors, February 1977. (PB 273 676/AS) A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 268 847) The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-Value. R.F. Quiring, April 1977. (PB 278 831) Moisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. (PB 268 740) Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Ravinsonde. Darryl Randarson, June 1977. (PB 271 290/AS) Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R.F. Quiring, June 1977. (PE 271 704/AS) A Method for Transforming Temperature Distribution to Normality. Morris S. Webb, Jr., June 1977. (PB 271 742/AS) Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB 272 661)

- Motion Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB 272661) Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB 273 155/AS) Climate of San Francisco. E. Jan Null, February 1978. Revised by George T. Pericht, April 1988. (PB88 208624/AS) Development of a Probability Equation for Winter-Type Precipitation Patterns in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB 281 387/AS) Hand Calculator Program to Compute Parcei Thermal Dynamics. Dan Gudgel, April 1978. (PB 283 080/AS) Fire whirls, David W. Goens, May 1978. (PB 283 866/AS) Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB 286 014/AS)

- 014/AS) Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September

- Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September 1978. (PB 289 916/AS)
 Estimates of the Effects of Terrain Blocking on the Los Angeles WSR-74C Weather Radar. R.G. Pappas, R.Y. Lee, B.W. Finke, October 1978. (PB 289767/AS)
 Spectral Techniques in Ocean Wave Forecasting. John A. Jannuzzi, October 1978. (PB20171/AS)
 Solar Radiation. John A. Jannuzzi, November 1978. (PB201196/AS)
 Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Kierulft, January 1979. (PB202716/AS)
 Basic Hydrologic Principles. Thomas L. Dietrich, January 1979. (PB202216/AS)
 LFM 24-Hour Prediction of Eastern Pacific Cyclones Refined by Satellite Imagos. John R. Zimmerman and Charles P. Ruscha, Jr., January 1979. (PB204324/AS)
 A Simple Analysis/Diagnesis System for Real Time Evaluation of Vertical Motion. Scott Heilick and James R. Fors, February 1979. (PB204216/AS)
 Aids for Forecasting Minimum Temperature in the Wenatchee Frost District. Robert S. Robinson, April 1979. (PB29339/AS) 135

- Smoke Management in the Willamette Valley. Earl M. Bates, May 1974. (COM 74 11277/AS)
 An Operational Evaluation of 500-mh Type Regression Equations. Alexander E. MacDonald, June 1974. (COM 74 11407/AS)
 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. John D. Thomas, August 1974. (COM 74 11565/AS)
 Climate of Flagstaff, Arizona. Paul W. Sorenson, and updated by Reginald W. Preston, January 1987. (PB87 143160/AS)
 Map type Precipitation Probabilities for the Western Region. Glenn E. Rasch and Alexander E. MacDonald, February 1975. (COM 75 10428/AS)
 Eastern Pacific Cut-Off Low of April 21-28, 1974. William J. Alder and George R. Miller, January 1976. (PB 250 711/AS)
 Study on a Significant Precipitation Episode in Western United States. Ira S. Brenner, April 1976. (COM 75 10719/AS)
 A Study of Flash Flood Susceptibility-A Basin in Southern Arizona. Gerald Williams, August 1975. (COM 75 11360/AS)
 A Study of Flash Flood Susceptibility-A Basin in Southern Arizona. Gerald Williams, August 1975. (COM 75 1360/AS)
 A Study on a Contess for Forecasting Temperatures in Napa and Sonoma Counties. Wesley L, Tuft, October 1975. (PB 246 902/AS)
 Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. (PB 250 563/AS)
 Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Charles P. Ruccha, Jr., February 1976. (PB 254 666/AS)
 Forecasting the Mono Wind. Charles P. Ruscha, Jr., February 1976. (PB 254 650)
 Ulae of MOS Forecast Parameters in Temperature Forecasting. John C. Plankinton.

NOAA Technical Memorandum NWS WR-205

FORECAST GUIDELINES FOR FIRE WEATHER FORECASTERS HOW NIGHTTIME HUMIDITY AFFECTS WILDLAND FUELS

David W. Goens Weather Service Office Missoula, Montana February 1989

• • •

This publication has been reviewed and is approved for publication by Scientific Services Division, Western Region.

in miethe

Ken Mielke, Acting Chief Scientific Services Division Salt Lake City, Utah

23) 114

TABLE OF CONTENTS

•	PAGE
Table of Contents	iii
List of Tables	iv
I. Introduction	1
II. Fuel Models	1
III. Fuel Moisture	2
IV. Relative Humidity Vs Fine Fuel Moisture	2
V. Nighttime Humidity Recovery	3
VI. Applications	4
VII. Conclusions	5
VIII. References	5

LIST OF TABLES

· PAGE

Table 1	Dead Fuel Classes	1
Table 2	Descriptions of FBA Fuel Models	2
Table 3	One-hour Timelag Fuel Moisture (Percent)	3
Table 4	Ten-hour Timelag Fuel Moisture (Percent)	3
Table 5	Moisture of Extinction 12%	6
Table 6	Moisture of Extinction 15%	6
Table 7	Moisture of Extinction 20%	7
Table 8	Moisture of Extinction 25% or Greater	7

iv

FORECAST GUIDELINES FOR FIRE WEATHER FORECASTERS HOW NIGHTTIME HUMIDITY AFFECTS WILDLAND FUELS

1

I. INTRODUCTION

The forecasting of meteorological elements for the Fire Weather Program presents the meteorologist with a special challenge. In order to make his/her forecast beneficial to the user, it must be presented in terms that are meaningful. When forecasting humidity, especially at night, the forecaster should be cognizant of the effects of humidity on the wildland fuel complex. Some fire weather offices have adopted an adjective rating system in order to describe to users the effects of humidity on wildland fuel. For example, a nighttime humidity recovery rating such as poor or good is often used. Unfortunately, such subjective ratings may have different meanings to different forecasters and wildland managers. Unless the forecaster understands the relationship between relative humidity and fuel moisture, he/she should use caution when assigning adjective ratings to forecast elements. This paper will outline how relative humidity, especially at night, affects different wild land fuels. In so doing, hopefully the field fire weather forecaster can make his/her forecast more useful to the wild land manager. More complete information on fuels and the effects of humidity on fuel moisture can be found in the National Wildfire Coordinating Group (NWCG) S-390 Fire Behavior Course.

The fuel component of the wildland fire environment has been modeled by fire scientists. Fuel models are comprised of woody and herbaceous elements of distinctive size classes. Some fuel models are composed of only dead fuels; others have a live component. This paper will focus on the relationship between dead fuels and short-term changes in relative humidity. In addition, fuel models are categorized broadly by major component groups, specifically: grass, shrub, timber, and slash. Unfortunately, there are two similar but distinct fuel model sets used by fire management and forestry officials. Forecasters must be familiar with both sets of fuel models used by wildland managers.

II. FUEL MODELS

A. The first set of models is the one outlined by Deeming, et al. (1971) in the publication on the National Fire Danger Rating System (NFDRS). This set of twenty models is commonly referred to as the NFDRS model. Most fire weather forecasters deal with the NFDRS system routinely.

Normally, any fire weather district may be adequately described by two or three of these models. The forecaster must become familiar with which models are used in his/her particular district. B. The second set of models is best described as the Fire Behavior Prediction System model as illustrated by Anderson (1982). These models are used by the prescribed fire manager and the fire behavior analyst in planning for prescribed burning and wildfire control. These models will be referred to as the FBA models. There are thirteen FBA fuel models. Forecasters will be exposed to these models when on an on site fire assignment, or when forecasting for a prescribed fire.

The NFDRS and FBA models are related but have some significant differences. Figure 1 illustrates how these two systems may be cross referenced.

On a day-to-day basis, managers are concerned with the threat of an initiating fire. Most initiating fires begin in the smaller size classes of fuels. For both NFDRS and FBA systems, the size classes of fuel are the same and are referred to in "Time Lag" categories. The time lag concept is poorly understood by most forecasters. It is defined in various publications, specifically Fosberg (1977). Briefly, it relates to the amount of time it takes for a specific size class of fuel to respond to a change in its environmental equilibrium moisture content. Whenever a fuel element experiences a change in its environmental equilibrium moisture content, the moisture content of the fuel will respond correspondingly but at a slower rate. If, for example, a fuel element had a moisture content of 16% and the environmental moisture content of 16% and the envinonmental moisture content of 16%

<u>Time-lag Class</u>	<u>Fuel Diameter (inches)</u>
1-hour	0 to 1/4
10-hour	1/4+ to 1
100-hour	1+ to 3
1000-hour	3+ to 8

Table 1. Dead Fuel Classes

The 10-hour fuels are the ones that fire weather forecasters are most familiar with. It is the size class represented by the NFDRS fuel stick that is weighed daily for fire danger calculations. Forecasters directly or indirectly forecast this stick weight each day in the NFDRS trend forecast. The 1-hour fuels and the 10-hour fuels are the ones most critical in an initiating fire. They are also the ones that are most responsive to diurnal changes in humidity and, specifically, to nighttime humidity recovery.

III. FUEL MOISTURE

As previously discussed, fuels respond to changes in atmospheric moisture in a somewhat predictable manner. From here forward we will concern ourselves only with the 1-hour and 10-hour fuels, since their sensitivity to moisture changes are the most critical in the diurnal cycle.

The concept of "moisture of extinction" (Anderson, 1982) needs to be understood at this point. The moisture of extinction is simply defined as the fuel moisture level at which fire will no longer sustain itself. In other words, it is the point at which the fuel becomes too wet to burn. Table 2 shows the 13 FBA fuel models, along with a fuel complex description, and the moisture of extinction for each model. The values of the moisture of extinction take into account all size classes (if present) but are heavily weighted to the fine fuels (1/4" or less in diameter). This concept now gives us a starting point to look at how changes in relative humidity (and corresponding changes in temperature) affect the wildland fuel complex. We will want to key on the moisture of extinction and how the fuels reach this moisture level.

IV. RELATIVE HUMIDITY VS. FINE FUEL MOISTURE

Relative humidity tends to follow a definite diurnal cycle during the typical western fire season. Highest values are normally observed around sunrise with the minimum temperature, lowest values during the late afternoon with the maximum temperature. Forecasters must be able to predict the relative humidity (and the temperature) for any specific time. With this information, fire managers may then be able to derive a fuel moisture for calculations of either a NFDRS index, or for a prediction of the behavior of a wild fire or a prescribed fire.

Fosberg and Deeming (1971) derived tables for field use for calculating both 1-hour and 10-hour fuel moisture. These are shown here as Tables 3 and 4.

Table 2 - Descriptions of FBA Fuel Models

Fuel model			Fuel i	oading			Moisture of extinction
Fuel model	Typical fuel complex	1 hour	10 hours	100 hours	Live	Fuel bed depth	dead fuels
		000000000000000000000000000000000000000	Ton	s/acre	000000000000000000000000000000000000000	Feet	Percent
	Grass and grass-dominated			•			
1	Short grass (1 foot)	0.74	0.00	0.00	0.00	1.0	12
2	Timber (grass and understory)	2.00	1.00	.50	.50	1.0	15
3	Tall grass (2.5 feet)	3.01	.00	.00	.00	2.5	25
	Chaparral and shrub fields						
4	Chaparral (6 feet)	5.01	4.01	2.00	5.01	6.0	20
5.	Brush (2 feet)	1.00	.50	.00	2.00	2.0	20
6	Dormant brush, hardwood slash	1.50	2.50	2.00	.00	2.5	25
7	Southern rough	1.13	1.87	1.50	.37	2.5	40
	Timber litter						
8	Closed timber litter	1.50	1.00	2.50	0.00	0.2	30
9	Hardwood litter	2.92	.41	.15	.00	.2	25
10	Timber (litter and understory)	3.01	2.00	5.01	2.00	1.0	25
	Slash						
11	Light logging slash	1.50	4.51	5.51	0.00	1.0	15
12	Medium logging slash	4.01	14.03	16.53	.00	2.3	20
13	Heavy logging slash	7.01	23.04	28.05	.00	3.0	25

State of	f weather 1/									Rel	ative	humi	dity	(perc	ent)							
Code 0-1	Code 2-9	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	
Temperature	Temperature	4	ý	14	19	24	29	- 34	39	44	49	5 4	59	64 64	÷ 59	+ 74	* 79	+ 84	\$9 89	- 194	4 99	100
10+29 ► 30+49 ≈ 50+69		111	222	222	3 3 3	4 4 4	5 5 5	5 5 5	6 6 6	7 7 6	8 7 7	8 7 7	8 8	9 9 8	9 9 9	10 10 9	11 10 10	12 11 11	12 12 12	13 13 12	13 13 12	14 13 13
= 70+89 \$\$ 90+109 109+		1 1 1	1 1 1	222	2 2 2	3 3 3	4	544	5 5 5	6 6	7 7 7	7 7 7	8 8 8	8 8 8	8 8 8	9 9 9	10 10 10	10 10 10	11 11 11	12 12 12	12 12 12	13 13 13
	10+29 ≻ 30+49 ⊆ 50+69	1 1 1	2 2 2	4 3 3	5 4 4	5 5 5	6 5 5	7 7 6	5	9 9 8	10 9 9	11 11 10	12 11 11	12 12 11	14 13 12	15 14 14	17 16 16	19 18 17	22 2 1 20	25 24 23	25+ 25+ 25+	25+ 25+ 25+
	¹⁰⁰ 70+89 ゴ 90+109 ビ 109+	1 1 1	2 2 2	3 [`] 3 2	4 3 3	4 4 4	5 5 5	6 6 6	7 7 6	8 8 8	9 9 8	10 9 9	10 10 9	11 10 10	12 [°] 11 11	13 13 12	15 14 14	17 16 16	20 19 19	23 22 21	25+ 25 24	25+ 25+ 25+

Table 3 - One-hour timelag fuel moisture (percent)

Table 4 - Ten-hour timelag fuel moisture (percent)

State o	f weather									Reli	ative	huni	dity	(perc	ent)				المالي وارت			
Code 0-1	Code 2-9	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Temperature	Temperature	i.	ġ	14	19	24	29	34	39	44,	49	54	59	64	, 6 9	74	79	84	89	94	99	
10+29 > 30+49 = 50+69	•	1	222	4 3 3	5 5 4	6 5 5	5 5 6	. 7 7 7	8 8 8	9 9 8	9 9	10 10 10	11 11 11	12 12 11	13 12 12	14 13 13	14 14 13	15 15 14	16 16 15	17 17 16	18 18 17	20. 20 19
∞ ⇒ 70+89 \$ 90+109 109+		1 1 1	1	3 3 3	4 4 3	544	5 5 5	6 6	7 7 7	. 8 8 7	8 8 8	9 9 9	10 10 10	11 11 10	12 11 11	12 12 11	13 12 12	14 13 13	14 13 13	16 15 15	16 16 15	18 18 17
	10+29 >- 30+49 = 50+69	1 1 1	2 2 2	5 5 4	6 6 5	7 7 6	8 6 7	. 9 . 8	10 10 9	11 11 10	12 12 11	13 13 13	14 14 13	15 15 14	17 16 16	18 18 17	20 20 19	23 23 22	25+ 25 24	25+ 25+ 25+	25+ 25+ 25+	25+ 25+ 25+
	⊐ ∞ 70+89 - 90+109 - 109+	1 1 1	2 2 2	4 3 3	544	6 5 5	7 .7 6	· 8 8 7	9 9 8	10 10 9	11 11 10	12 11 11	13 12 12	14 13 13	15 14 14	16 16 15	18 18 17	21 20 20	24 23 22	25+ 25+ 25	25+ 25+ 25+	25+ 25+ 25+

These tables show fuel moisture values for both sunny and cloudy conditions. These tables show what the steady-state fuel moisture would be given the state of the sky (cloudy or sunny), and the ambient temperature and relative humidity. For example, with sunny skies, temperature 75° and relative humidity 47%, the 1-hour fuel moisture would reach a steady-state fuel moisture value of 7%. The portion for cloudy skies may be used for nighttime conditions as well. It has been used in this manner for a number of years and taught at the I-590 Fire Behavior Analyst Course, National Advanced Resource Technology Center, Marana, Arizona. This is meant to be a field guide, and both experience and later research have proven the

tables to be quite accurate. They will provide valuable guidance for our purposes.

V. NIGHTTIME HUMIDITY RECOVERY

Some forecasters in Rocky Mountain timber types have developed somewhat intuitive procedures for assigning adjective ratings to the rate and amount of change in relative humidity during the nighttime period. At this time there are no hard rules for assigning ratings, but the following ratings are offered for illustration.

Humidity Recovery Ratings

Rating	Definition
Poor	Humidity slow to increase,
	values may stay below 40 percent.
Fair	Humidity increases slowly, values
	may reach of 40 to 60 percent.
Good	Humidity increases at a nearly
	"normal"rate, values may
·.	reach 60 to 75 percent.
Excellent	Humidity increases at a normal
	or better rate, values exceed
	75 percent.

Given the ambient humidity recovery, we need to systematically evaluate the fuel situation and see how different humidity values affect the moisture content of specific fuel models. This will help us devise an adjective rating system that may be more universally applicable.

Since the moisture of extinction is heavily weighted to the fine dead fuel component, we will use this portion of the complex to assess the humidity recovery impacts. Let me suggest the following "<u>Fuel Moisture Recovery</u>" adjective rating for any fuel model:

Fuel Moisture Recovery

Rating	Definition
	Humidity recovers to value
	that would produce:
Poor	Less than 50% of Moisture
	of Extinction
Fair	51% to 70% of Moisture of
	Extinction
Good	71% to 95% of Moisture of
	Extinction
Excellent	Greater than 95% of Moisture
	of Extinction

VI. APPLICATIONS

Tables 5 through 8 have been extracted from the Field Reference Guide developed for students attending the I-590 Fire Behavior Analyst Course. These tables have been modified to graphically display the fuel models with adjective ratings keyed to values of fuel moisture (%).

On a daily basis, the forecaster deals with the NFDRS fuel models and needs to be aware of the models represented in his/her area of responsibility. This may be determined by checking the AFFIRMS catalog (Helfman, Straub, & Deeming, 1987), or simply calling the land managers. Once the fuel model is determined, locate the proper table and study how different maximum humidity/minimum temperature levels affect the fuels.

Example:

NFDRS Fuel Model G

Moisture of Extinction = 25%

Minimum Temperature forecast = 45 F

Maximum Humidity forecast = 70%

Humidity Recovery Rating = Good

Fuel Moisture Recovery = Fair

In contrast, if the Fuel Model had been "A" with the same forecast of temperature and humidity, the Fuel Moisture Recovery would have been classified as Excellent.

When making site-specific forecasts for either a wild fire or a prescribed fire, forecasters may be dealing with FBA fuel models. Also, they may be asked to make time-specific forecasts of meteorological elements. In these situations, forecasters may not wish to use adjective descriptors, but they may be helpful as additional information to land managers.

The use of the tables are the same in either case.

Example:

FBA Fuel Model 4

Moisture of Extinction 20%

Temperature Forecast at 2 AM = 65 F

Humidity Forecast at 2 AM = 47%

Humidity Recovery Rating = Fair

Fuel Moisture Recovery = Poor

By studying the tables it is easy to note that fuels are more responsive to humidity than to temperature. Therefore, even though we must have both temperature and humidity to make an assessment of fine fuel moisture, the greatest effort should be directed toward an accurate humidity forecast.

VII. CONCLUSIONS

A good forecast is made up of a combination of meteorological elements, packaged in a manner that is meaningful to the users. Forecasters should use caution when forecasting other than pure meteorological elements. Humidity recovery may be interpreted differently by different fire management clients and, therefore, is not a pure meteorological element in the fire weather forecast.

A forecast product is always inherently better if the forecaster has an understanding of how his/her product impacts the user. This paper was presented to encourage fire weather forecasters to become familiar with one of the critical wildland fire parameters. By understanding the nighttime humidity-fuel moisture relationship, the forecaster can produce a more usable product by putting emphasis where emphasis is due.

The job of the forecaster is to forecast <u>meteorological</u> elements. The land manager is responsible for interpreting the impacts of the forecast.

Forecasters who choose to use the term "Humidity Recovery" along with an adjective rating should do so with caution. The adjective ratings used in this paper were for illustrative purposes only. Local research and coordination with client agencies should be completed before adopting any adjective rating system. If both an adjective rating and an actual numerical value are included in each nighttime humidity forecast, any confusion or false assumptions may be avoided.

VIII. REFERENCES

5

Anderson, Hal E., 1982: Aids to Determining Fuel Models for Estimating Fire Behavior. <u>USDA For.</u> <u>Serv. Gen. Tech. Rpt. INT-122</u>, 22p. Intermt. For. and Range Exp. Stn., Ogden, Ut.

Deeming, John E., Robert E. Burgan, and Jack D. Cohen, 1977: The National Fire Danger Rating System-1978. <u>USDA For. Serv. Gen. Tech. Rpt. INT-39</u>, 63 p. Intermt. For. and Range Exp. Stn., Ogden, Ut.

Fosberg, Michael A.,1977: Forecasting 10-Hour Time-lag Fuel Moisture. <u>USDA For. Serv. Research</u> <u>Paper RM-187</u>, 10 p. Rocky Mtn. For. and Range Exp. Stn., Fort Collins, Co.

Fosberg, Michael A. and John E. Deeming, 1971: Derivation of the 1- and 10-Hour Timelag, Fuel, Moisture Calculations for Fire Danger Rating. <u>USDA</u> <u>For. Serv. Research Note RM-207</u>, 8p. Rocky Mtn. For. and Range Exp. Stn., Fort Collins, Co.

Helfman, Robert S., Robert J. Straub, and John E. Deeming, 1987: Users Guide to AFFIRMS: Time Share Computerized Processing for Fire Danger Rating. <u>USDA For. Serv. General Tech. Rpt. INT-82</u>. Intermt. For. and Range Exp. Stn., Ogden, Ut. FBA 1 NFDRS A, L, S

NIGHT TIME 2000-0759

MOISTURE OF EXTINCTION 12%

				RELATIVE HUMIDITY (PERCENT) Dry Bulls 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Comperature Y <td< th=""><th></th><th></th></td<>																	
Dry Bulb Temperature (°F)	i D Y Y	5 ¥ 9	10 Y 14	15 Y 19	20 Y 24	25 ¥ 29	30 † 34	35 ↓ 39	40 ¥ 44	45 ¥ 49	50 ¥ 54	55 ¥ 59	60 ↑ 64	65 * 69	70 † 74	75 ¥ 79	80 ¥ 84	85 ¥ 89	90 † 94	95 ¥ 99	100
10 - 29	1	2	4	5	5	6	7	8	9	10	11	12	12	14	15	17	19	22	25	25+	25+
30 - 49	1	2	3	4	5	6	7	8	9	9	11	11	12	13	14	16	18	21	24	25+	25+
50 - 69	1	2	3	4	5	6	6	8	8	9	10	11	11	2	14	16	17	20	23	25+	25+
70 - 89	1	2	3	4	4	5	6	7	8	g	10	10	11	12	13	15	17	20	23	25+	25+
90 - 109	1	2	3	3	4	5	6	7	8	9	9	10	10	11	13	14	16	19	22	25	25+
109+	1	2	2	3	4	5	6	6	8	8	9	9	10	11	12	14	16	19	21	24	25+
UEL MOISTURE POOR FAIR GOOD EXCELLENT ECOVERY TABLE 5. UEL MODELS FBA 2, 11 IFDRS C, T, K INIGHT TIME 2000-0759																					
FUEL MODEL FBA 2, 11 NFDRS C, T, F	LS K	-								GH1 100	' TI •07	ME 59	E				F 15%	, 			
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F)		5	10 † 14	15 † 19	20 † 24	25 ¥ 29	RE1 30 ¥ 34	_A 35 ¥ 39	NI 21 40 40 44	GH1 DOO E F 45 ¥ 49	1U 107 1U 107 107 107 107 107 107 107 107	ME 59 MII 55 ¥ 59	№ E DIT 60 Ý 64	101S XTI Y (65 ¥	TUR NCT PE 70 74	E 0 ION RC 75 79	F 15% Er 80 ¥	NT) 85 4 89	90 † 94	95 ¥ 99	100
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29		5 1 2	10 † 14	15 † 19 5	20 † 24 5	25 ¥ 29 6	30 ¥ 34	A 35 39 8	NI 21 12 11∨ 40 44 9	GH1 100 E F 45 49 10	107 107 101 50 11	ME 59 12	№ = 01T 60 ¥ 64 12	1015 XTI 65 7 69	TUR NCT PE 70 74 15	E 0. ION RC 75 79 17	F 15% 80 ¥ 19	NT) 85 ¥ 89 22	90 † 94 25	95 ¥ 99 25+	100
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29 30 - 49		5 19 2 2	10 † 14 4 3	15 19 5 4	20 † 24 5 5	25 7 29 6 6	30 ¥ 34 7 7	A 35 39 8 8	NI 21 40 ↓ 44 9 9	GH1 100 E H 45 49 10 9	107 107 107 107 107 11	ME 59 55 7 59 12	₽ E DIT 60 ¥ 64 12 12	101S XTI 65 7 69	TUR NCT 70 74 15	E O. ION RC 75 79 17 16	F 15% 80 ¥ 19 18	NT) 85 ¥ 89 22 21	90 † 94 25 24	95 ¥ 99 25+ 25+	100 25+ 25+
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29 30 - 49 50 - 69		5 19 2 2 2	10 14 14 3 3	15 19 5 4 4	20 ¥ 24 5 5	25 29 6 6 6	REI 30 ¥ 34 7 6	A 35 39 8 8 8	NI 21 40 ↓ 44 9 9 8	GH1 100- E F 45 49 10 9 9	10 10 10 10 10	ME 59 55 7 59 12 11	№ E DIT 60 Ý 64 12 12 11	101S XTI 65 7 69 13 12	PE 70 74 15	E O ION RC 75 79 17 16	F 15% 80 ¥ 19 18 17	NT) 85 ¥ 89 22 21 20	90 ¥ 94 25 24 23	95 ∳ 99 25+ 25+ 25+	100 25+ 25+ 25+
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29 30 - 49 50 - 69 70 - 89	_S _	5Y9 222 222	10 14 14 3 3 3	15 ¥ 19 5 4 4	20 ¥ 24 5 5 5 4	25 1 29 6 6 5	REI 30 ¥ 34 7 6 6	A 35 39 8 8 8 8 7	NI 21 40 44 9 9 8 8	GH1 100 E H 45 49 10 9 9	107 107 101 10 10	ME 59 55 55 55 59 12 11	№ E DIT 60 ¥ 64 12 11 11	1015 XTI Y (65 ¥ 69 13 12	PE 70 74 15 14 13	E O ION RC 75 79 17 16 16	F 15% 80 ¥ 19 18 17	NT) 85 ¥ 89 22 21 20 20	90 ¥ 94 25 24 23 23	95 ¥ 99 25+ 25+ 25+ 25+	100 25+ 25+ 25+ 25+
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29 30 - 49 50 - 69 70 - 89 90 - 109		5¥922222222	$\begin{array}{c} 10\\ \uparrow\\ 14\\ \hline\\ 3\\ \hline\\ 3\\ \hline\\ 3\\ \hline\\ 3\\ \hline\end{array}$	15 19 5 4 4 3	20 ¥ 24 5 5 5 4 4	25 29 6 6 5 5	30 ¥ 34 7 6 6 6	A 35 39 8 8 8 7 7	NI 21 40 40 44 9 9 8 8 8 8 8	GH1 100 E F 45 49 10 9 9 9 9	107 107 107 10 10 10 9	ME 59 55 7 59 12 11 10	№ = 01T 60 ¥ 64 12 11 11 10	1015 XTI 65 7 69 14 13 12	PE 70 74 15 14 13 13	E 0. ION RC 75 79 17 16 16 15 14	F 15% 80 ¥ 84 19 18 17 16	NT) 85 9 22 21 20 19	90 ¥ 94 25 24 23 23 22	95 99 25+ 25+ 25+ 25+ 25+	100 25+ 25+ 25+ 25+ 25+
FUEL MODEL FBA 2, 11 NFDRS C, T, F Dry Buib Temperature (°F) 10 - 29 30 - 49 50 - 69 50 - 69 70 - 89 90 - 109 109-+	S C V 4 1 1 1 1 1	54922222	10 14 14 3 3 3 2	15 + 19 = 5 = 4 = 4 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3	20 ¥ 24 5 5 5 4 4 4	25 29 6 6 5 5 5	30 30 34 7 7 6 6 6 6 6	A 35 39 8 8 8 8 7 7 6	NI 21 40 40 44 9 9 8 8 8 8 8 8 8 8	GH1 100 E H 45 49 10 9 9 9 9 9 8	TI -07 1U 50 ¥ 54 11 10 10 9 9	ME 59 12 11 10 10		1015 XTI 65 7 69 14 13 12 12	TUR NCT 70 74 15 14 13 13 12	RC 75 79 17 16 16 14 14	F 15% 80 ¥ 19 18 17 16 16	NT) 85 ¥ 89 22 21 20 20 19 19	90 ∳ 94 25 24 23 23 22 21	95 99 25+ 25+ 25+ 25+ 25+ 25+ 25+ 24	100 25+ 25+ 25+ 25+ 25+ 25+

.

6

TABLE 6.

FBA 4, 5, 23 NFDRS B, J

NIGHT TIME 2000-0759

MOISTURE OF **EXTINCTION 20%**

	RELATIVE HUMIDITY (PERCENT)																				
Dry Bulb Temperature (°F)		10- y -g;	10 † 14	15 † 19	20 † 24	25 ∳ 29	30 † 34	35 ∳ 39	40 ∳ 44	45 ¥ 49	50 ¥ 54	55 † 59	60 ¥ 64	65 † 69	70 Ý 74	75 Ý 79	80 † 84	85 ↑ 89	90 ∳ 94	95 ¥ 99	100
10 - 29	1	2	4	5	5	6	7	8	9	10	11	12	12	14	15	17	19	22	25	25+	25+
30 - 49	1	2	3	4	5	6	7	8	9	9	11	11	12	13	14	16	18	21	24	25+	25+
50 - 69	1	2	3	4	5	6	6	8	8	g	10	11	11	12	14	16	17	20	23	25+	25+
70 - 89	1	2	3	4	4	5	6	7	8	g	0	10	11	12	13	15	17	20	23	25+	25+
90 - 109	1	2	3	3	4	5	6	7	8	g	g	0	10	11	13	14	16	19	22	25	25+
109+	1	2	2	3	4	5	6	6	8	8	g	g	10	11	12	14	16	19	21	24	25+
FUEL MOI	STU	JRI	E			P	OOR							F	AIR		(300	DI	EXCEL	LENT

RECOVERY

TABLE 7.

FUEL MODELS FBA 3, 6, 7, 8, 9, 10, 13 NFDRS N, F, O, H, R, G, I

NIGHT TIME 2000-0759

MOISTURE OF EXTINCTION 25% OR GREATER

						F	REL	. A [.]	ΓIV	Eŀ	IU	MIC	דוכ	Y (PE	RC	EN	IT)			
Ory Bulb Temperature (°F)	0 4 4	5 ¥ 9	10 ∳ 14	15 † 19	20 ¥ 24	25 ∳ 29	30 ¥ 34	35 † 39	40 ¥ 44	45 ¥ 49	50 ¥ 54	55 ∳ 59	60 † 64	65 ¥ 69	70 ¥ 74	75 † 79	80 ¥ 84	85 † 89	90 † 94	95 ¥ 99	100
10 - 29	1	2	4	5	5	6	7	8	g	10	11	12	12	14	15	17	19	22	25	25+	25+
30 - 49	1	2	3	4	5	6	7	8	g	g	11	11	12	13	14	16	18	21	24	25+	25+
50 - 69	1.	2	3	4	5	6	6	8	8	9	10	11	11	12	14	16	17	20	23	25+	25+
70 - 89	1	2	3	4	4	5	6	7	8	9	10	10	11	12	13	15	17	20	23	25+	25+
90 - 109	1	2	3	3	4	5	6	7	8	g	9	10	10	Π	3	14	16	19	22	25	25+
109+	1	2	2	3	4	5	6	6	8	8	9	g	10	11	12	14	16	19	21	24	25+
FUEL MOI	ST	URJ	E]	P00]	R							F	'AIR		GC	OOD	EX	CELLEI

RECOVERY

TABLE 8.

PHYSICAL DESCRIPTION SIMILARITY CHART OF NFDRS AND FBA FUEL MODELS

NFDRS MODELS REALINED TO FUELS CONTROLLING SPREAD UNDER SEVERE BURNING CONDITIONS

8

- Influence of Cloudiness on Summertime Temperatures in the Eastern Washington Fire Weather district. James Holcomb, April 1979. (PB298674/AS) Comparison of LFM and MFM Precipitation Guidance for Nevada During Doreen. Christopher Hill, April 1979. (PB298613/AS) The Usefulness of Data from Mountaintop Fire Lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298899/AS) The Depth of the Marine Layer at San Diego as Related to Subsequent Cool Season Precipitation Episodes in Arizona. Ira S. Brenner, May 1979. (PB298817/AS)
- (PE298811/AS) Arizona Cool Season Climatological Surface Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PE298900/AS) The BART Experiment. Morris S. Webb, October 1979. (PE80 155112) Occurrence and Distribution of Flash Floods in the Western Region. Thomas L. Dietrich, December 1979. (PE80 160344) Misinterpretations of Precipitation Probability Forecasts. Allan H. Murphy, Sarah Lichtenstein, Baruch Fischhoff, and Robert L. Winkler, February 1980. (PE80 174576)
- (PB80 174576)
- Annual Data and Verification Tabulation Eastern and Central North Pacific Tropical Storms and Hurricanes 1979. Emil B. Gunther and Staff, EPHC, April 1980. (PB80 220486) NMC Model Performance in the Northeast Pacific. James E. Overland, PMEL-
- Rel, April 1980. (PB80 196033) Climate of Salt Lake City, Utah. Wilbur E. Figgins, Third Revision January 1987. (PB87 157194/AS)
- 1907. (PDS715/194/AS) An Automatic Lightning Detection System in Northern California. James E. Rea and Chris E. Fontana, June 1980. (PB80 225592) Regression Equation for the Peak Wind Gust 6 to 12 Hours in Advance at Great Falls During Strong Downslope Wind Storms. Michael J. Oard, July 1980. (PB91 103567)
- Index for the Arizona Monsoon. John H. Ten Harkel, July 1980. A Raininess . (PB81 106494) The Effects of Terrain Distribution on Summer Thunderstorm Activity at Reno,
- The Linetts of Terrain Distribution on Summer Thunderstorm Activity at Reno, Nevada. Christopher Dean Hill, July 1980. (PB81 102501) An Operational Evaluation of the Scofield/Oliver Technique for Estimating Precipitation Rates from Satellite Imagery. Richard Ochoa, August 1980. (PB81 108227)
- (FDG1 100221) Hydrology Fracticum. Thomas Dietrich, September 1980. (PB81 134033) Tropical Cyclone Effects on California. Arnold Court, October 1980. 133779)
- Faster r. North Pacific Tropical Cyclone Occurrences During Intraseasonal s. Preston W. Leftwich and Gail M. Brown, February 1981. (PB81 205494)

- 205494) Solar Radiation as a Sole Source of Energy for Photovoltaics in Las Vegas, Nevada, for July and December. Darryl Randerson, April 1981. (PB81 224503) A Systems Approach to Real-Time Runoff Molalysis with a Deterministic Rainfall-Runoff Model. Robert J.C. Burnash and R. Larry Ferral, April 1981. (PB81 224495) A Comparison of Two Methods for Forecasting Thunderstorms at Luke Air Force Base, Arizona. LTC Keith R. Cooley, April 1981. (PB81 225393) An Objective Aid for Forecasting Afternoon Relative Humidity Along the Washington Cascade East Slopes. Robert S. Robinson, April 1981. (PB81 23078) 23078)
- Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1980. Emil B. Gunther and Staff, May 1981. (PB82 230336) Preliminary Estimates of Wind Power Potential at the Nevada Test Site. Howard G. Booth, June 1981. (PB82 127036) ARAP User's Guide. Mark Mathewson, July 1981, Revised September 1981. (DBeg 1976)

- (PBS2196783) Forecasting the Onset of Coastal Gales Off Washington-Oregon. John R. Zimmerman and William D. Burton, August 1981. (PBS21927051) A Statistical-Dynamical Model for Prediction of Tropical Cyclone Motion in the Eastern North Pacific Ocean. Preston W. Leftwich, Jr., October 1981. (PBS2195286)
- (PBS2195298) An Enhanced Plotter for Surface Airways Observations. Andrew J. Spry and Jeffrey L. Anderson, October 1981. (PBS2 153883) Verification of 72-Hour 500-MB Map-Type Predictions. R.F. Quiring, November 1981. (PBS2 158098) Forecasting Heavy Snow at Wenatchee, Washington. James W. Holcomb, December 1981. (PBS2 177783)

- 1981. (PB52 177783)
 Central San Joaquin Valley Type Maps. Thomas R. Crossan, December 1981. (PB82 196064)
 ARAP Test Results. Mark A. Mathewson, December 1991. (PB82 198103)
 Approximations to the Peak Surface Wind Gusts from Desert Thunderstorms. Darryl Randerson, June 1982. (PB82 253089)
 Climate of Phoenix, Arizona. Robert J. Schmidli, April 1969 (Revised December 1986). (PB51 142063/AS)
 Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1982. E.B. Gunther, June 1983. (PB85 106078)
 Stratified Maximum Temperature Relationships Between Sixteen Zone Stations in Arizona and Respective Key Stations. Ira S. Brenner, June 1983. (PB83 249904)
- in Arizona and Respective Key Stations. Ira S. Brenner, June 1983. (PB83 249904) Standard Hydrologic Exchange Format (SHEF) Version I. Phillip A. Pasteries, Vernon C. Bissel, David G. Bennett, August 1983. (PB85 106052) Quantitative and Spacial Distribution of Winter Precipitation along Utah's Wasatch Front, Lawrence B. Dunn, August 1983. (PB85 106912) 500 Millibar Sign Frequency Teleconnection Charts Winter. Lawrence B. Dunn, December 1983. (PB85 106276) 500 Millibar Sign Frequency Teleconnection Charts Spring. Lawrence B. Dunn, January 1984. (PB85 111367) Collection and Use of Lightning Strike Data in the Western U.S. During Summer 1983. Glenn Rasch and Mark Mathewson, February 1984. (PB85 110534) 500 Millibar Sign Frequency Teleconnection Charts Summer. Lawrence B. Dunn, March 1984. (PB85 111359) Annual Data and Verification Tabulation eastern North Pacific Tropical Storms and Hurricanes 1983. E.B. Gunther, March 1984. (PB85 109635) 500 Millibar Sign Frequency Teleconnection Charts Fall. Lawrence B. Dunn, May 1984. (PB85 110930) The Use and Luterpretation of Isentropic Analyses. Jeffrey L. Anderson, October 1984. (PB85 132694) Annual Data & Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1984. E.B. Gunther and R.L. Cross, April 1985. (PB85 187887AS) Great Salt Lake Effect Snowfall: Some Notes and An Example. David M. Carpenter, October 1985. (PB86 119153/AS)

- Large Scale Patterns Associated with Major Freeze Episodes in the Agricultural Southwest. Ronald S. Hamilton and Glenn R. Lussky, December 1985. (PB86 144474AS) NWR Voice Synthesis Project: Phase I. Glen W. Sampson, January 1986. (PB86

 - Southwest. Konald S. Hamilton and Glenn K. Lussky, December 1985. (PBS6 144474AS) NWR Voice Synthesis Project: Phase I. Glen W. Sampson, January 1986. (PB86 145604/AS) The MCC An Overview and Case Study on Its Impact in the Western United States. Glenn R. Lussky, March 1986. (PB86 170651/AS) Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1985. E.B. Gunther and R.L. Cross, March 1986. (PB86 170641/AS) Radid Interpretation Guidelines. Roger G. Pappas, March 1986. (PB86 170640/AS) A Mesoscale Convective Complex Type Storm over the Desert Southwest. Darryl Randerson, April 1996. (PB86 19099/AS) The Effects of Eastern North Pacific Tropical Cyclones on the Southwestern United States. Walter Smith, August 1986. (PB87 10625AS) Preliminary Lightning Climatology Studies for Idaho. Christopher D. Hill, Carl J. Gorski, and Michael C. Conger, April 1987. (PBS7 10625AS) Heavy Rains and Flooding in Montana: A Case for Slantwise Convection. Glenn R. Lussky, April 1987. (PB87 1185229/AS) Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1986. Roger L. Cross and Kenneth B. Mielke, September 1987. (PB88 110895/AS) An Imaxyensive Solution for the Mass Distribution of Satellite Images. Glen W.

 - (PB85 11089/AS) An Inexpensive Solution for the Mass Distribution of Satellite Images. Glen W. Sampson and George Clark, September 1987. (PB88 114038/AS) Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1987. Roger L. Cross and Kenneth B. Mielke, September 1988. (PB88 101935/AS)
 - An Investigation of the 24 September 1986 "Cold Sector" Tornado Outbreak in Northern California. John P. Monteverdi and Scott A. Braun, October 1988.
 - (PB89 121297/AS) Preliminary Analysis of Cloud-To-Ground Lightning in the Vicinity of the Nevada Test Site. Carven Scott, November 1988. (PB89 128649/AS)

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications.

PROFESSIONAL PAPERS--Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS--Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc. TECHNICAL SERVICE PUBLICATIONS--Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications. 15

TECHNICAL REPORTS--Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS--Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

NATIONAL TECHNICAL INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE

5285 PORT ROYAL ROAD

SPRINGFIELD, VA 22161